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Basic Idea

* Scalar Regression Model.:
* Predicts scalar as target variable
* Many possible architectures (linear regression, ANN, CNN, etc.)

e.g. “l predict the high temperature will be 80 °F tomorrow”

-

* Distributional Regression Model 4 \

* Predicts multiple scalars that are parameters of a probabilistic |= _~ |\
distribution for the target variable 74 77 80 83 86

e.g. “l predict the high temperature tomorrow will come from a Q
Gaussian with mean 80 and SD 3”
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* Figure From Barnes et al. (2023)
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In Literature

* Concept introduced with Gaussian for dummy dataset:

* Estimating the Mean and Variance of the Target Probability Distribution (Nix and
Weigend 1994)

e Use of non-Gaussian distributions:

* Generalized Additive Models for Location, Scale and Shape (Rigby and
Stasinopoulos 2005)

* Widespread use in Computer Science, starting to see use in
Atmospheric Science:

* Controlled Abstention Neural Networks for Identifying Skillful Predictions for
Regression Problems (Barnes and Barnes 2021)

e Sinh-arcsinh-normal distributions to add uncertainty to neural network
regression tasks: Applications to tropical cyclone intensity forecasts (Barnes et
al. 2023): Uses SHASH distribution instead of Gaussian



Loss Function

* Consider: Observed temperature y = 83
» Scalar Regression (prediction y = 80):
 (R)MSE: (83 —80)% =9
« MAE: |83 — 80| =3

* Distributional Regression (prediction y = N (80, 3))

* What represents the quality of prediction?
e Likelihood: L(y|x) = p(y|x; 6(x))
* Take negative log for easy optimization
* Loss £ = Y, —p(yilxi; 6(xy)
* Negative Log Likelihood
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More generally, for gaussian:
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(b) Sinh-Arcsinh Normal Distributions
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 Four parameters:

e Location (¢/u; analogous to mean)
* Scale (n/o; analogous to variance)
» Skewness (¢/y; asymmetry, positive skews right)
* Tailweight (6 /t; larger means heavier tails and more
“peaked”)
 As with Gaussian,
* Model predicts these four parameters
* Lossis NLL (from PDF above)
 Don’tworry, | won’t make you do any of the math



Discussion

* What are some advantages/disadvantages of distributional
regression?

* What situations could we apply this method in?
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Fall Meeting Schedule

https://www.when2meet.com/?32421861-w\WdvB
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https://tinyurl.com/3s24n4wr
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